Abstract

Arsenic, a poisonous metalloid element, is linked to liver diseases, but the exactmechanisms for this process are not yet to be completely elucidated. Toll like receptor 4 (TLR4), acting as a pathogenic pattern recognition receptor, plays a pivotal role in various inflammatory diseases via the myeloid differentiation factor 88 (MyD88) pathway. This study aims to investigate the involvement of the TLR4-MyD88 signaling pathway in liver injury induced by prolonged exposure to sodium arsenite (NaAsO2) in Sprague-Dawley rats. Our research findings demonstratethe activation of TLR4-MyD88 signaling pathway in long-term NaAsO2-exposed rat liver tissues, leading to a significant release of inflammatory factors, which suggests its potential involvement in the pathogenesis of NaAsO2-induced liver injury. We further administered lipopolysaccharide (LPS), a natural ligand of TLR4, and TAK-242, a specific inhibitor of TLR4, to rats in order to validate the specific involvement of the TLR4-MyD88 signaling pathway in NaAsO2-induced liver injury. The results showed that, 1 mg/kg.bw LPS treatment significantly activated TLR4-MyD88 signalling pathway and its mediated pro-inflammatory factors, leading to up-regulation of activation indicators in hepatic stellate cells (HSCs) as well as increased secretion levels of extracellular matrix (ECM) in the liver, and ultimately induced liver fibrosis and dysfunction in rats. Relevantly, subsequent administration of 0.5 mg/kg.bw TAK-242 significantly attenuated the expression levels of TLR4 and its associated proteins, mitigated collagen deposition, and partially improved liver fibrosis and dysfunction caused by NaAsO2 in rats. Our study fully confirms the pivotal role of the TLR4-MyD88 signaling in promoting liver injury induced by NaAsO2, thereby providing a novel molecular target for preventing and treating patients with arsenic poisoning-related liver injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.