Abstract

Natural killer (NK) cells express an activating Fc receptor (FcgammaRIIIa) that mediates antibody-dependent cellular cytotoxicity (ADCC) and production of immune modulatory cytokines in response to antibody-coated targets. Cetuximab is a therapeutic monoclonal antibody directed against the HER1 antigen. We hypothesized that the NK cell response to cetuximab-coated tumor cells could be enhanced by the administration of NK cell-stimulatory cytokines. Human NK cells stimulated with cetuximab-coated tumor cells and interleukin-2 (IL-2), IL-12, or IL-21 were assessed for ADCC and secretion of IFN-gamma and T cell-recruiting chemokines. IL-21 and cetuximab were given to nude mice bearing HER1-positive xenografts. Stimulation of human NK cells with cetuximab-coated tumor cells and IL-2, IL-12, or IL-21 resulted in 3-fold to 10-fold higher IFN-gamma production than was observed with either agent alone. NK cell-derived IFN-gamma significantly enhanced monocyte ADCC against cetuximab-coated tumor cells. Costimulated NK cells also secreted elevated levels of chemokines (IL-8, macrophage inflammatory protein-1alpha, and RANTES) that could direct the migration of naive and activated T cells. IL-2, IL-12, and IL-21 enhanced NK cell ADCC against tumor cells treated with cetuximab. The combination of cetuximab, trastuzumab (an anti-HER2 monoclonal antibody), and IL-21 mediated greater NK cell cytokine secretion and ADCC than any agent alone. Furthermore, administration of IL-21 enhanced the effects of cetuximab in a murine tumor model. These results show that cetuximab-mediated NK cell activity can be significantly enhanced in the presence of NK cell-stimulatory cytokines. These factors, therefore, may be effective adjuvants to administer, in combination with cetuximab, to patients with HER1-positive malignancies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call