Abstract

The activation of matriptase requires proteolytic cleavage at a canonical activation motif that converts the enzyme from a one-chain zymogen to an active, two-chain protease. In this study, matriptase bearing a mutation in its catalytic triad was unable to undergo this activational cleavage, suggesting that the activating cleavage occurs via a transactivation mechanism where interaction between matriptase zymogen molecules leads to activation of the protease. Using additional point and deletion mutants, we showed that activation of matriptase requires proteolytic processing at Gly-149 in the SEA domain of the protease, glycosylation of the first CUB domain and the serine protease domain, and intact low density lipoprotein receptor class A domains. Its cognate inhibitor, hepatocyte growth factor activator inhibitor-1, may also participate in the activation of matriptase, based on the observation that matriptase activation did not occur when the protease was co-expressed with hepatocyte growth factor activator inhibitor-1 mutated in its low density lipoprotein receptor class A domain. These results suggest that besides matriptase catalytic activity, matriptase activation requires post-translational modification of the protease, intact noncatalytic domains, and its cognate inhibitor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.