Abstract

BackgroundPyroptosis is closely relevant to sepsis. However, the molecular mechanisms of pyroptosis in pneumonia-induced sepsis are still not fully understood. Thus, this study aimed to find the specific molecular pathways associated with pyroptosis and explore their relationship in pneumonia-induced sepsis.MethodsFirst, significant signaling pathways related to pneumonia-induced sepsis were screened by bioinformatics analysis based on GSE48080. The peripheral blood samples from patients with pneumonia-induced sepsis and healthy subjects were collected. Pneumonia-induced sepsis rat models were also established. Then, inflammatory response, pyroptosis, and regulatory T cells (Tregs)/T-helper 17 (Th17), Th1/Th2, and M1/M2 cell ratios in pneumonia-induced sepsis were evaluated.ResultsIL-17 signaling pathway was significantly related to pneumonia-induced sepsis by bioinformatics analysis. Compared with healthy groups, the higher of Th17/Treg, Th1/Th2 and M1/M2 cell radios in the patients and sepsis rat model indicated that pneumonia-induced sepsis caused a severe inflammatory response. This result was confirmed by higher levels of pro-inflammatory factors (IL-6, TNF-α, IL-1β, and IL-18) and an inflammation indicator (LDH), as well as pyroptosis occurrence in sepsis. Additionally, the up-regulation of key molecules (HMGB1, RAGE, IL-17A, TRAF6 and NK-κB) in the IL-17 signaling pathway suggested the IL-17 pathway was activated. Moreover, the release of IL-1β and IL-18 and the levels of the molecules (NLRP3, NLRC4, Cleaved caspase-1, and Cleaved GSDMD) associated with caspase-1-dependent pyroptosis were up-regulated in pneumonia-induced sepsis.ConclusionsAs NK-κB activation can promote the development of caspase-1-dependent pyroptosis, these findings suggested that the activation of the IL-17 signaling pathway could promote pyroptosis in pneumonia-induced sepsis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.