Abstract

AbstractThe temperature dependence of the high-frequency conductivity of snow was studied for eight samples in the range — 10°C to — 80°C. The activation energies for granular snow varied from 0.60 eV at temperatures down to — 25°C to 0.24 eV at temperatures below — 25°C, and for dry snow from 0.42 eV to 0.18 eV in the same temperature ranges. Dry snow samples had higher conductivities and lower activation energies than granular icy samples throughout the complete temperature range.Volume and surface conduction processes were operative. At the higher temperatures above — 25°C volume conduction was attributed to Bjerrum defect migration, while at lower temperatures Bjerrum conduction was replaced by ionic-defect conduction. Granular samples which had experienced melting and reflecting on the surface of the crystals have a structural change which decreased the ionic-defect density at the surface and lowered the sample conductivity.Above — 25°C, the activation energies for granular icy snow were consistent with those for temperate glacier ice and for laboratory single and polycrystalline ice samples, but was not in agreement with those of either polar snow or ice. Below — 25°C, the activation energies for granular snow were consistent with those for temperate glacier ice, containing impurities, and for polar snow and ice. Fresh dry temperate snow-samples had lower activation energies than in situ polar snow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call