Abstract

Although azelnidipine is used clinically to treat hypertension its effects on its target cells, Ca2+ channels, in smooth muscle have not been elucidated. Therefore, its effects on spontaneous contractions and voltage-dependent L-type Ca2+ channels were investigated in guinea-pig portal vein. The inhibitory potency of azelnidipine on spontaneous contractions in guinea-pig portal vein was compared with those of other dihydropyridine (DHP)-derived Ca antagonists (amlodipine and nifedipine) by recording tension. Also its effects on voltage-dependent nifedipine-sensitive inward Ba2+ currents (IBa) in smooth muscle cells dispersed from guinea-pig portal vein were investigated by use of a conventional whole-cell patch-clamp technique. Spontaneous contractions in guinea-pig portal vein were reduced by all of the Ca antagonists (azelnidipine, Ki = 153 nM; amlodipine, Ki = 16 nM; nifedipine, Ki = 7 nM). In the whole-cell experiments, azelnidipine inhibited the peak amplitude of IBa in a concentration- and voltage-dependent manner (-60 mV, Ki = 282 nM; -90 mV, Ki = 2 microM) and shifted the steady-state inactivation curve of IBa to the left at -90 mV by 16 mV. The inhibitory effects of azelnidipine on IBa persisted after 7 min washout at -60 mV. In contrast, IBa gradually recovered after being inhibited by amlodipine, but did not return to control levels. Both azelnidipine and amlodipine caused a resting block of IBa at -90 mV. Only nifedipine appeared to interact competitively with S(-)-Bay K 8644. These results suggest that azelnidipine induces long-lasting vascular relaxation by inhibiting voltage-dependent L-type Ca2+ channels in vascular smooth muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call