Abstract

The Euler-Lagrange equation derived from Schwinger's action principle (1951) has been shown by Kianget al. (1969) and Linet al. (1970) to lead to inconsistencies for quadratic lagrangians of the form $$\bar L(\dot q,q) = \tfrac{1}{2}\dot q^j g_{jk} (q)\dot q^k - V(q)$$ except in the Euclidean caseg jk =δ jk . This inadequacy is linked to Schwinger's specification that the variations of operators bec-numbers. We reformulate the action principle by introducing the concept of ‘proper’ Gauteaux variation of operators to find the most general class of admissible variation consistent with the postulated quantisation rules. This new action principle, applied to the LagrangianL, yields a quantum Euler equation consistent with the Hamilton-Heisenberg equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call