Abstract

To better understand the altered skeletal muscle excitation-contraction (E-C) coupling that occurs in malignant hyperthermia, we have examined the potentiating actions of perchlorate in intact muscle fiber bundles, isolated sarcoplasmic reticulum (SR) vesicles, and the purified ryanodine receptor/Ca2+ release channel (RyR) isolated from malignant-hyperthermia-susceptible (MHS) and normal porcine muscle. The concentration of perchlorate that half-maximally potentiated twitch tension (2.5-3.5 mM) was not significantly different for MHS and normal muscles. The effect of perchlorate on fractional twitch force was significantly greater for normal than for MHS muscle, although the absolute twitch potentiation was similar for both muscle types. The K-contracture threshold of MHS muscle bundles is significantly lower than that of normal bundles; perchlorate shifted the K-contraction activation curves of both MHS and normal muscle bundles to lower K+ concentrations. Perchlorate both increased ryanodine binding to MHS and normal SR vesicles and increased single-channel open probability of the purified MHS and normal RyR. In both cases, the percentage increase was greater for normal than for MHS preparations; however, the absolute increase in activity was not different for MHS and normal RyR indicating that there is no difference in the perchlorate sensitivity of MHS and normal SR Ca2+ release channels. Thus, the greater absolute responses of the MHS Ca2+ release channel in the presence of perchlorate is likely to be due to the greater basal activity of the MHS release channel and does not reflect an underlying defect in the site of action of perchlorate on the MHS skeletal muscle Ca2+ release channel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call