Abstract

This paper analyzes the state of a bound two-electron formation (a bipolaron) in an electromagnetic radiation field that is not considered weak. By using the Kramers-Henneberger unitary transformation, the external, rapidly oscillating action is transferred to the argument of the potential energy. It is shown that increasing the external field intensity produces a monotonic decrease of the dissociation energy of a bound two-electron formation and reduces the number of its vibrational states. It is established that the external field produces attenuation of the electron-phonon interaction. The degree of dissociation of the bipolaron is computed as a function of the external field intensity, the temperature, and the concentration. The transition between the bound two-particle state and the single-particle state is treated as a smeared phase transition. © 2004 Optical Society of America

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.