Abstract

The intensity of carbon dioxide can vary depending on land management practices, temperature of the soil, and soil moisture. The soil CO2 efflux per non-growing season was 61% lower than per growing season. The CO2 efflux, averaged across data, tended to decrease in the following orders: grassland > forest > no-tillage > reduced tillage > conventional tillage (per non-growing season and measurement period) and grassland > forest > no-tillage > conventional tillage > reduced tillage (per growing season). Soil temperature averaged; in the natural land uses, it was 18% lower than in the anthropogenic land uses. Soil temperature averaged; in the non-growing season, it was 55% lower than under the growing season. The temperature (up to 25 °C) increased the soil CO2 efflux per measurement period. By increasing the temperature in the soil, the soil efflux decreased in natural land use under growing season, but in anthropogenic land use, it increased per measurement period. The volumetric water content averaged; in the non-growing season, it was 3% lower than under the growing season. The volumetric water content had a positive effect on CO2 efflux, but when the water content was higher than 15% in anthropogenic land use, and 20% in natural land use per growing season, the relationships were negative.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call