Abstract
The action-angle representation in quantum mechanics is conceptually quite different from its classical counterpart and motivates a canonical discretization of the phase space. In this work, a discrete and finite-dimensional phase space formalism, in which the phase space variables are discrete and the time is continuous, is developed and the fundamental properties of the discrete Weyl-Wigner-Moyal quantization are derived. The action-angle Wigner function is shown to exist in the semi-discrete limit of this quantization scheme. A comparison with other formalisms which are not explicitly based on canonical discretization is made. Fundamental properties that an action-angle phase space distribution respects are derived. The dynamical properties of the action-angle Wigner function are analysed for discrete and finite-dimensional model Hamiltonians. The limit of the discrete and finite-dimensional formalism including a discrete analogue of the Gaussian wavefunction spread, viz. the binomial wavepacket, is examined and shown by examples that standard (continuum) quantum mechanical results can be obtained as the dimension of the discrete phase space is extended to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.