Abstract

A key role is emerging for the cytoskeleton in coordinating receptor signaling, although the underlying molecular requirements remain unclear. Here we show that cytoskeleton disruption triggered signaling requiring not only the B cell receptor (BCR), but also the coreceptor CD19 and tetraspanin CD81, thus providing a mechanism for signal amplification upon surface-bound antigen stimulation. By using superresolution microscopy, we demonstrated that endogenous IgM, IgD, and CD19 exhibited distinct nanoscale organization within the plasma membrane of primary B cells. Upon stimulation, we detect a local convergence of receptors, although their global organization was not dramatically altered. Thus, we postulate that cytoskeleton reorganization releases BCR nanoclusters, which can interact with CD19 held in place by the tetraspanin network. These results not only suggest that receptor compartmentalization regulates antigen-induced activation but also imply a potential role for CD19 in mediating ligand-independent "tonic" BCR signaling necessary for B cell survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.