Abstract

The fraction of stellar mass contained in globular clusters (GCs), also measured by number as the specific frequency, is a fundamental quantity that reflects both a galaxy's early star formation and its entire merging history. We present specific frequencies, luminosities, and mass fractions for the globular cluster systems of 100 early-type galaxies in the ACS Virgo Cluster Survey, the largest homogeneous catalog of its kind. We find the following: (1) GC mass fractions can be high in both giants and dwarfs but are universally low in galaxies with intermediate luminosities. (2) The behavior of specific frequency across galaxy mass is dominated by the blue GCs. (3) GC fractions of low-mass galaxies exhibit a dependence on environment. Nearly all dwarf galaxies with high GC fractions are within 1 Mpc of the cD galaxy M87, presenting the first strong evidence that GC formation in dwarfs is biased toward dense environments. (4) GC formation in central dwarfs is biased because their stars form earliest and most intensely. Comparisons to the Millennium Simulation show that central dwarfs have older stellar populations and form more stars at higher star formation rates (SFRs) and SFR surface densities. The SFR surface density in simulated dwarfs peaks before the total SFR, naturally producing GC populations that are older and more metal-poor than the field stars. (5) Dwarfs within ~40 kpc of the giant ellipticals M87 and M49 are red and have few or no GCs, suggesting that they have been tidally stripped and have contributed their GCs to the halos of their giant neighbors. The central dwarfs with high GC mass fractions are thus likely to be the survivors most similar to the protogalaxies that assembled the rich M87 globular cluster system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call