Abstract

A cortical-basal ganglia network involving, particularly, the posterior region of dorsomedial striatum (DMS) has been implicated in the acquisition of goal-directed actions; however, no direct evidence of learning-related plasticity in this striatal region has been reported, nor is it known whether, or which, specific cell types are involved in this learning process. The striatum is primarily composed of two classes of spiny projection neurons (SPNs): the striatonigral and striatopallidal SPNs, which express dopamine D1 and D2 receptors, respectively. Here we establish that, in mice, the acquisition of goal-directed actions induced plasticity in both D1- and D2-SPNs specifically in the DMS and, importantly, that these changes were in opposing directions; after learning, AMPA/NMDA ratios were increased in D1-SPNs and reduced in the D2-SPNs in the DMS. Such opposing plasticity could provide the basis for rapidly rebiasing the control of task-specific actions, and its dysregulation could underlie disorders associated with striatal function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.