Abstract
In the development of product design, one of the elements of market competition for products is to meet the Kansei needs of users. Compared to features, users pay more attention to whether products can match their emotions, which is Kansei needs. The product developers are eager to get the Kansei needs of users more accurately and conveniently. This paper takes the computer cloud platform as the carrier and based on the collaborative filtering algorithm. We used personalized double matrix recommendation algorithm as the core, and the adjectives dimensionality reduction method to filter the image tags to simplify the users’ rating process and improve the recommendation efficiency. Finally, we construct a Kansei needs acquisition model to quickly and easily obtain the Kansei needs of users. We verify the model using the air purifier as a subject. The results of the case show that the model can find out the user’s Kansei needs more quickly. When the data is more, the prediction will be more accurate and timely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.