Abstract

We discuss the effectively detectable scattered intensity of ultrasound from diagnostic microbubble suspensions, taking dissipative mechanisms in the liquid medium into account. In particular, we conclude that neither non-linear wave steepening of the incident (driving) wave nor of the outgoing (scattered) wave has a large effect on the scattered signal from typical bubbles. It is shown that, paradoxically, the far-field solution of the wave field is sufficient to compute the magnitude of expected temperature rises in the medium due to acoustic heat deposition, although appreciable heating is limited to intermediate-field distances from the bubble surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.