Abstract

This study evaluates the variations in the acoustic properties of the human femur at ten evenly spaced locations along its length, as well as differences that exist within given transverse sections. Six pairs of human femora, three male and three female, were sectioned, ground, and polished, and scanned with a microprocessor-driven scanning acoustic microscope. Images with a resolution of approximately 140 microns were used to calculate the average acoustic impedances for each transverse cross section and each quadrant within a cross section. The mean acoustic impedance for all the cross sections was 7.69 +/- 0.18 Mrayls. Variations were observed among the cross sections, and the central sections (4-7) had values that were statistically greater than the other more distal and proximal sections. Within the cross sections, the posterior quadrant had a lower average acoustic impedance compared to the other quadrants and this was statistically significant (Tukey's multiple comparison test). The cross sections were further analyzed to determine several geometric parameters including the principal moments of inertia, polar moment of inertia, and the biomechanical shape index. The product of the acoustic impedance and the maximum moment of inertia provided a result that attempted to account for the acoustic property variation and the change in shape at the different section locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.