Abstract

Acinetobacter baumannii is a significant opportunistic pathogen responsible for infections of the lung, blood, skin, urinary tract, and soft tissues, with some strains exhibiting almost complete resistance to commonly used antibiotics. This multidrug resistance, together with a dearth of new antibiotic development, mean novel methods of treatment and prevention are urgently needed. Although many A. baumannii factors required to colonize the host have been identified, little is known about the specific host molecules recognized by these factors. A. baumannii produces a trimeric autotransporter adhesin known as Ata that has been previously demonstrated to bind components of the host cell's extracellular matrix, which are often heavily glycosylated. We hypothesized that Ata would exhibit lectin activity which would play a role in adherence to the host cell surface. Our biophysical analysis using glycan arrays and surface plasmon resonance demonstrated that Ata binds galactose, N-acetylglucosamine, and galactose (β1-3/4) N-acetylglucosamine with high-affinity. These structures are present on many of the proteins which were previously reported to be bound by Ata. We also demonstrated that the recognition of human plasma fibronectin by Ata requires this ability to bind glycans, as the interaction between Ata and fibronectin does not occur when fibronectin is deglycosylated. This strongly suggests a key role for Ata lectin activity during host adherence. This information will assist in directing the development of new and effective treatments to block host interactions using glycans and/or novel compounds in multidrug resistant A. baumannii infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.