Abstract

1,N(6)-ethenoadenine (epsilonA) is a highly mutagenic lesion that is excised from human DNA by the enzyme alkyladenine DNA glycosylase (AAG). In an effort to understand the intrinsic properties of 1,N(6)-ethenoadenine, we examined its gas phase acidity and proton affinity using quantum mechanical calculations and mass spectrometric experimental methods. We measure two acidities for epsilonA: a more acidic site (DeltaH(acid) = 332 kcal mol(-1); DeltaG(acid) = 325 kcal mol(-1)) and a less acidic site (DeltaH(acid) = 367 kcal mol(-1); DeltaG(acid) = 360 kcal mol(-1)). We also find that the proton affinity of the most basic site of 1,N(6)-ethenoadenine is 232-233 kcal mol(-1) (GB = 224 kcal mol(-1)). These measurements, when compared to calculations, establish that, under our experimental conditions, we have only the canonical tautomer of 1,N(6)-ethenoadenine present. We also compare the gas phase acidic properties of epsilonA with that of the normal bases adenine and guanine and find that epsilonA is the most acidic. This supports the theory that AAG and other related enzymes may cleave damaged bases as anions. Furthermore, comparison of the gas phase and aqueous acidities indicates that the nonpolar environment of the enzyme enhances the acidity differences of epsilonA versus adenine and guanine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.