Abstract
Because of its outstanding thermochromic characteristics and metal-insulator transition (MIT) property, nano-vanadium dioxide (abbreviated as nano-VO2 or nVO2) has been applied widely in electrical/optical devices and design of intelligent window. However, the biological effect of nVO2 is not well understood, especially when affected by environmental factors or living organisms. For VO2 is an amphoteric oxide, we simulated pH's influence to nVO2’s physicochemical properties by exposure nVO2 in water of different pH values. We found that nVO2 transformed to a new product after exposure in acidic water for two weeks, as revealed by physicochemical characterization such as SEM, TEM, XRD, and DLS. This transformation product formed in acidic water was referred as (acidic) transformed nVO2). Both pristine/untransformed and transformed nVO2 displayed no obvious toxicity to common epithelial cells; however, the acidic transformed nVO2 rapidly induced macrophage cell death. Further investigation demonstrated that transformed nVO2 caused macrophage apoptosis by the induction of Ca2+ efflux and the following mitochondrial membrane permeabilization (MMP) process. And a more detailed time course study indicated that transformed nVO2 caused lysosomal membrane permeabilization (LMP) at the earlier stage, indicating LMP could be chosen as an earlier and sensitive end point for nanotoxicological study. We conclude that although nVO2 displays no acute toxicity, its acidic transformation product induces macrophage apoptosis by the induction of LMP and Ca2+ efflux. This report suggests that the interplay with environmental factors or living organisms can results in physicochemical transformation of nanomaterials and the ensuing distinctive biological effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.