Abstract
The acidic proteins, A-proteins, from the large ribosomal subunit of Saccharomyces cerevisiae grown under different conditions have been quantitatively estimated by ELISA tests using rabbit sera specific for these polypeptides. It has been found that the amount of A-protein present in the ribosome is not constant and depends on the metabolic state of the cell. Ribosomes from exponentially growing cultures have about 40% more of these proteins than those from stationary phase. Similarly, the particles forming part of the polysomes are enriched in A-proteins as compared with the free 80 S ribosomes. The cytoplasmic pool of A-protein is considerably high, containing as a whole as much protein as the total ribosome population. These results are compatible with an exchanging process of the acidic proteins during protein synthesis that can regulate the activity of the ribosome. On the other hand, cells inhibited with different metabolic inhibitors produce a very low yield of ribosomes that contain, however, a surprisingly high amount of acidic proteins while the cytoplasmic pool is considerably reduced, suggesting that under stress conditions the ribosome and the A-protein may aggregate, forming complex structures that are not recovered by the standard preparation methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.