Abstract

Pyrazinamide, a first-line antibiotic used against Mycobacterium tuberculosis, has been shown to act in a pH-dependent manner in vitro. Why pyrazinamide, an antitubercle prodrug discovered more than 65 years ago, exhibits this pH-dependent activity was unclear. Upon entering mycobacterial cells, pyrazinamide is deamidated to pyrazinoate by an enzymatic process and exists in an acid-base equilibrium with pyrazinoic acid. Thus, the effects of total pyrazinoic acid (pyrazinoic acid + pyrazinoate) on M. tuberculosis growth, pH homeostasis, and proton motive force over a range of pH values found in host tissues were investigated. Although M. tuberculosis was able to maintain pH homeostasis over an external pH range of 7.0 to 5.5, total pyrazinoic acid induced growth inhibition increased as culture medium pH was decreased from 7.3 to 6.4. Consistent with growth inhibition, total pyrazinoic acid increased both acidification of the bacterial cytoplasm and dissipation of membrane potential as the environmental pH decreased when added to the bacterial suspensions. The results suggest pyrazinoic acid is the active form of the drug, which acts as an uncoupler of proton motive force, likely a protonophore, providing a mechanistic explanation for the pH dependence of the drug activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.