Abstract
Human neutrophils are terminally differentiated cells that spontaneously undergo apoptosis in tissue culture. Apoptosis in these cells can be delayed by culture in the presence of granulocyte colony-stimulating factor or other inflammatory mediators. Neutrophils were found to contain an acid endonuclease that appeared to be responsible for the internucleosomal DNA cleavage that accompanies apoptosis. As measured by a plasmid nicking assay, this endonuclease had a molecular weight (M(r)) of 35,000, a pH optimum of 5.5, and a threshold for activity of pH 6.6 to 6.8. It was weakly inhibited by divalent cations (Ca2+, Mg2+, and Zn2+) and more strongly inhibited by aurintricarboxylic acid and N-bromosuccinimide. DNA from neutrophils treated with nigericin in buffers of defined pH displayed nucleosomal ladders whose prominence varied with pH in a manner that paralleled the pH dependence of the plasmid cleavage assays, consistent with internucleosomal DNA cleavage by the acid endonuclease. We have previously shown that neutrophils undergo acidification to a pH value as low as 6.0 during apoptosis; we suggest that this endonuclease may be responsible for the DNA cleavage seen in apoptotic neutrophils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.