Abstract
Despite proposed ecological importance of mucilage in seed dispersal, germination and seedling establishment, little is known about the role of mucilage in seed pre-germination processes. Here we investigated the role of mucilage in assisting achene cells to repair DNA damage during dew deposition in the desert. Artemisia sphaerocephala achenes were first treated γ-irradiation to induce DNA damage, and then they were repaired in situ in the desert dew. Dew deposition duration can be as long as 421 min in early mornings. Intact achenes absorbed more water than demucilaged achenes during dew deposition and also carried water for longer time following sunrise. After 4-d dew treatment, DNA damage of irradiated intact and demucilaged achenes was reduced to 24.38% and 46.84%, respectively. The irradiated intact achenes exhibited much higher DNA repair ratio than irradiated demucilaged achenes. Irradiated intact achenes showed an improved germination and decreased nonviable achenes after dew treatment, and significant differences in viability between the two types of achenes were detected after 1020 min of dew treatment. Achene mucilage presumably plays an ecologically important role in the life cycle of A. sphaerocephala by aiding DNA repair of achene cells in genomic-stressful habitats.
Highlights
Plants have efficient adaptive systems to help them survive in different ecological environments
A. sphaerocephala achenes absorbed water from air in early mornings when relative humidity (RH) was above 90% (Figures 1 and 2), and the time period of RH above 90% was consider as dew deposition time
The mucilage of A. sphaerocephala achenes is expected to play an ecological role in DNA repair of achene cells during dew deposition in harsh desert environments
Summary
Plants have efficient adaptive systems to help them survive in different ecological environments. As desert plants are exposed to such stressful environments, they have evolved numerous physiological and morphological traits to adapt to the harsh conditions. Adaptation is a complex process in which populations of organisms can respond to long-term environmental stresses by permanent genetic change [3]. For those plants growing in the moving and semi-stable sand dunes, such molecular mechanisms are of vital importance for their long-term survival strategy that involves survival on or near the surface of dry and torrid sands. It is essential for an organism to protect its DNA integrity since the genome contains all the information required for its development and reproduction. Faithful and effective repair of DNA damage is of equal importance to prevention of DNA damage for the maintenance of genome integrity [8,9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.