Abstract

Abstract The very careful Event Horizon Telescope estimate of the mass of the supermassive black hole at the center of the giant cD galaxy M87, allied with recent high-quality photometric and spectroscopic measurements, yields a proper dark/luminous mass decomposition from the galaxy center to its virial radius. That provides us with decisive information on crucial cosmological and astrophysical issues. The dark and the standard matter distributions in a wide first time detected galaxy region under the supermassive black hole gravitational control. The well-known supermassive black hole mass versus stellar dispersion velocity relationship at the highest galaxy masses implies an exotic growth of the former. This may be the first case in which one can argue that the supermassive black hole mass growth was also contributed by the dark matter component. A huge dark matter halo core in a galaxy with inefficient baryonic feedback is present and consequently constrains the nature of the dark halo particles. The unexplained entanglement between dark/luminous structural properties, already emerged in disk systems, also appears.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.