Abstract
Tests for unit roots in panel data have become very popular. Two attractive features of panel data unit root tests are the increased power compared to time-series tests, and the often well-behaved limiting distributions of the tests. In this paper we apply Monte Carlo simulations to investigate how well the normal approximation works for a heterogeneous panel data unit root test when there are only a few cross sections in the sample. We find that the normal approximation, which should be valid for large numbers of cross-sectional units, works well, at conventional significance levels, even when the number of cross sections is as small as two. This finding is valuable for the applied researcher since critical values will be easy to obtain and p-values will be readily available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.