Abstract

The accuracy of two widely used digital elevation models of Antarctica was assessed using data from the Geoscience Laser Altimeter System onboard ICESat. The digital elevation models were derived from satellite radar altimeter and terrestrial data sets. The first, termed JLB97, was produced predominantly from ERS-1 data while the second, termed, RAMPv2 included other sources of data in areas of high relief and poor coverage by ERS-1. The accuracy of the models was examined as a function of surface slope and original data source. Large errors, in excess of 100 m, were ubiquitous in both models in areas where terrestrially-derived elevation data had been used but were more extensive in RAMPv2. Elsewhere, the systematic error (bias) was found to be a monotonic function of slope for JLB97, with a more complex, less predictable bias for RAMPv2. The magnitude of the global, slope-dependent, bias ranged from less than a metre to slightly over 10 m but with much larger regional deviations. The random error ranged from about 1 m to over 100 m depending on the DEM and slope. The random error was consistently over a factor two larger for RAMPv2 compared to JLB97.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.