Abstract

The dendrite tip kinetics model accuracy relies on the reliability of the stability constant used, which is usually experimentally determined for 3D situations and applied to 2D models. The paper reports authors' attempts to cure the situation by deriving 2D dendritic tip scaling parameter for aluminium-based alloy: Al-4wt%Cu. The obtained parameter is then incorporated into the KGT dendritic growth model in order to compare it with the original 3D KGT counterpart and to derive two-dimensional and three-dimensional versions of the modified Hunt's analytical model for the columnar-to-equiaxed transition (CET). The conclusions drawn from the above analysis are further confirmed through numerical calculations of the two cases of Al-4wt%Cu metallic alloy solidification using the front tracking technique. Results, including the porous zone-under-cooled liquid front position, the calculated solutal under-cooling and a new predictor of the relative tendency to form an equiaxed zone, are shown, compared and discussed two numerical cases. The necessity to calculate sufficiently precise values of the tip scaling parameter in 2D and 3D is stressed.

Highlights

  • Part of the Electrical and Computer Engineering CommonsRecommended Citation Seredynski, M., Rebow, M. & Banaszek, J. (2016). The accuracy of a 2D and 3D dendritic tip scaling parameter in predicting the columnar to equiaxed transition (CET)

  • Dendritic crystal structures which form during solidification of metallic alloys have their enormous influence on the mechanical properties of solid alloys, the dendritic growth problem has been a topic of long-term interest within the academia and metal industry

  • The obtained parameter is incorporated into the KGT dendritic growth model in order to compare it with the original 3D KGT counterpart and to derive two-dimensional and three-dimensional versions of the modified Hunt’s analytical model for the columnar-to-equiaxed transition (CET)

Read more

Summary

Part of the Electrical and Computer Engineering Commons

Recommended Citation Seredynski, M., Rebow, M. & Banaszek, J. (2016). The accuracy of a 2D and 3D dendritic tip scaling parameter in predicting the columnar to equiaxed transition (CET). The accuracy of a 2D and 3D dendritic tip scaling parameter in predicting the columnar to equiaxed transition (CET).

Related content
Introduction
TM TM
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call