Abstract
Total disc replacements (TDRs) in the spine have been clinically successful in the short term, but there are concerns over long-term failure due to wear, as seen in other joint replacements. Simulators have been used to investigate the wear of TDRs, but only gravimetric measurements have been used to assess material loss. Micro computer tomography (microCT) has been used for volumetric measurement of explanted components but has yet to be used for in-vitro studies with the wear typically less than < 20 mm3 per 10(6) cycles. The aim of this study was to compare microCT volume measurements with gravimetric measurements and to assess whether microCT can quantify wear volumes of in-vitro tested TDRs. microCT measurements of TDR polyethylene cores were undertaken and the results compared with gravimetric assessments. The effects of repositioning, integration time, and scan resolution were investigated. The best volume measurement resolution was found to be +/- 3 mm3, at least three orders of magnitude greater than those determined for gravimetric measurements. In conclusion, the microCT measurement technique is suitable for quantifying in-vitro TDR polyethylene wear volumes and can provide qualitative data (e.g. wear location), and also further quantitative data (e.g. height loss), assisting comparisons with in-vivo and ex-vivo data. It is best used alongside gravimetric measurements to maintain the high level of precision that these measurements provide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.