Abstract

AbstractThe distribution of slip during subduction megathrust earthquakes depends on the slip deficit that accumulates on the plate interface prior to the event. We develop 3‐D finite element models of subduction zones to investigate how locked zones restrict surrounding regions on the plate boundary from sliding. What is new is that we quantify the slip around asperities on the megathrust. The models show plate interface slip increasing from zero at the edge of a locked zone to the relative plate motion over a distance of ~200 km along the megathrust. This area of reduced slip accumulates a seismic moment deficit up to 10 times larger than the moment deficit in the asperity alone. Updip of locked areas, slip at the trench can be reduced by more than 50% of the plate motion. Despite large displacements of the upper plate near the trench, this region moves as a semirigid block. Rupture models of the 2011 Tohoku earthquake, its tsunami characteristics, and geophysical observations near the trench can be interpreted to reflect the consequences of slip deficit accumulated on a low friction interface updip of the seismogenic zone. Neighboring asperities affect plate interface slip in a nonlinear way. Multiple asperities have overlapping pseudo‐coupled regions that may restrict the magnitude of coseismic slip in single‐asperity ruptures. Once an earthquake has a rupture length greater than ~250 km, it may recover the entire accumulated slip deficit. This is consistent with the magnitude of coseismic slip in several recent great megathrust earthquakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call