Abstract
β-Xylosidases (EC 3.2.1.37) are among the principal glycosyl hydrolases involved in the breakdown of hemicelluloses, catalyzing the reduction of xylooligosaccharides to free xylose. All GH39 β-xylosidases structurally characterized to date display a modular multi-domain organization that assembles a tetrameric quaternary structure. In this work, the crystal structure and the SAXS molecular envelope of a new GH39 β-xylosidase from Caulobacter crescentus (CcXynB2) have been determined. Interestingly, CcXynB2 is a monomer in solution and comparative structural analyses suggest that the shortened C-terminus prevents the formation of a stable tetramer. Moreover, CcXynB2 has a longer loop from the auxiliary domain (the long α-helix-containing loop) which makes a number of polar and hydrophobic contacts with the parental (α/β)(8)-barrel domain, modifying the accessibility and the molecular topography of the catalytic interface. These interactions also maintain the accessory domain tightly linked to the catalytic core, which may be important for enzyme function and stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section D Biological Crystallography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.