Abstract
The cheA gene of Escherichia coli encodes two proteins from in-frame tandem translation start sites. The long form of CheA (CheA(L)) is the histidine kinase responsible for phosphorylating the response regulator, CheY. The short form of CheA (CheA(S)) is identical in domain structure to CheA(L) except that it is missing the first 97 amino acids. Reduced CheA(S) bound to and enhanced the activity of the phosphatase of phospho-CheY, CheZ. Oxidized CheA(S) was unable to interact with CheZ. Oxidized CheA(S) formed covalent dimers, whereas CheA(L) did not. This property was believed to be the result of an intermolecular disulfide bond. The CheA proteins contain three cysteine residues, one of which likely lies within the CheZ binding region of CheA(S) and is exposed to solvent. We identified the CheZ binding domain of CheA(S) by testing the various fragments of CheA(S) that contain cysteine residues for CheZ binding activity in an ELISA-based CheA(S)-CheZ binding assay. Fragments of CheA(S) lacking the truncated P1 domain of CheA(S) ('P1) were unable to bind CheZ. We also found that a fusion of the first 42 amino acids of CheA(S) ('P1 domain) to GST bound CheZ and enhanced its activity. The interaction between the GST-CheA[98-139] fusion protein and CheZ was dependent on the accessibility of a cysteine residue (Cys-120) located in the 'P1 domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.