Abstract

To investigate the photoinhibition of photosynthesis in ‘Honeycrisp’ apple (Malus domestica Borkh. cv. Gala) leaves with zonal chlorosis, we compared pigments, CO2 assimilation and chlorophyll (Chl) a fluorescence (OJIP) transient between chlorotic leaves and normal ones. Chl and carotenoids (Car) contents, Chl a/b ratio, and absorptance were lower in chlorotic leaves than in normal ones, whereas Car/Chl ratio was higher in the former. Although CO2 assimilation and stomatal conductance were lower in chlorotic leaves, intercellular CO2 concentration did not differ significantly between the two leaf types. Compared with normal leaves, chlorotic ones had increased deactivation of oxygen-evolving complexes (OEC), minimum fluorescence (F o), dissipated energy, relative variable fluorescence at L-, W-, J- and I-steps, and decreased maximum fluorescence (F m), maximum quantum yield for primary photochemistry (F v /F m or TRo/ABS), quantum yield for electron transport (ETo/ABS), quantum yield for the reduction of end acceptors of photosystem I (PSI) (φRo and REo/ABS), maximum amplitude of IP phase, amount of active photosystem II (PSII) reaction centers (RCs) per cross section (CS) and total performance index (PItot,abs). In conclusion, photoinhibition occurs at both the donor (i.e., the OEC) and the acceptor sides of PSII in chlorotic leaves. The acceptor side is damaged more severely than the donor side, which possibly is the consequence of over-reduction of PSII due to the slowdown of Calvin cycle. In addition to decreasing light absorptance by lowering Chl level, energy dissipation is enhanced to protect chlorotic leaves from photo-oxidative damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.