Abstract

This paper presents the many-accelerator architecture, a design approach combining the scalability of homogeneous multi-core architectures and system-on-chip's high performance and power-efficient hardware accelerators. In preparation for systems containing tens or hundreds of accelerators, we characterize a diverse pool of accelerators and find each contains significant amounts of SRAM memory (up to 90% of their area). We take advantage of this discovery and introduce the accelerator store, a scalable architectural component to minimize accelerator area by sharing its memories between accelerators. We evaluate the accelerator store for two applications and find significant system area reductions (30%) in exchange for small overheads (2% performance, 0%--8% energy). The paper also identifies new research directions enabled by the accelerator store and the many-accelerator architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.