Abstract

AbstractAn ac-microindentation technique, namely indenting with a small displacement modulation superimposed on an otherwise linear indenter motion, will be introduced. The basic principle and theory will also be illustrated by using a mechanical model to simulate the indenter behavior.Other than being as capable as conventional indentation, the ac-technique acquires the unloading slope simultaneously and continuously with the penetration depth and applied load during an entire indentation process. With this extra information, the conversion between the total depth and plastic depth can be executed right after a single indentation, and in turn the hardness as well as. contact modulus depth profiles can be calculated. This is in contrast to the conventional indentation technique where a group of indentations associated with different maximum loads are required in order to achieve the same purpose. Furthermore, it also avoids the subjectivity in the selection of the fitting portions from the unloading stage of an indentation curve to extract the unloading slopes as well as the plastic penetration depths.Another important advantage of using this ac-technique is the high sensitivity in detecting the indenter/surface contact. This advantage is very useful in the determination of the origins of penetration depths as well as in the investigation the evolution of the contact area, and both issues are very crucial in the microhardness calculations.The strain rate effect on the hardness measurements of a 1 μm thick Al-2%Si coating has been demonstrated by using the ac-technique. As the indenter loading speed increases from 2.5 to 10 nm/sec, the measured hardness of the coating can be increased from ∼20% to ∼80% depending on the penetration depth, and the shallower the penetration depth the larger the increment is. However, the contact modulus depth profiles remain unchanged for all the indentation rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.