Abstract

Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich AGB stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si-C bond detected in C-rich AGB stars are SiC2, SiC, and Si2C. To date, the ring molecule SiC2 has been observed in a handful of evolved stars, while SiC and Si2C have only been detected in the C-star envelope IRC +10216. We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars. We carried out sensitive observations with the IRAM 30m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, and Si2C in the λ 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC2 and to derive SiC2 fractional abundances in the observed envelopes. We detect SiC2 in most of the sources, SiC in about half of them, and do not detect Si2C in any source, at the exception of IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC2 line emission, which suggests that both species are chemically linked, the SiC radical probably being the photodissociation product of SiC2 in the external layer of the envelope. We find a clear trend in which the denser the envelope, the less abundant SiC2 is. The observed trend is interpreted as an evidence of efficient incorporation of SiC2 onto dust grains, a process which is favored at high densities owing to the higher rate at which collisions between particles take place. The observed behavior of a decline in the SiC2 abundance with increasing density strongly suggests that SiC2 is an important gas-phase precursor of SiC dust in envelopes around carbon stars.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.