Abstract

BackgroundThe knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. Culicine species are the primary vectors of Japanese encephalitis (JE) virus and filariasis in China. Anopheles sinensis plays a major role in the maintenance of Plasmodium vivax malaria transmission in China. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and An. sinensis in Yongcheng city, a representative region of P. vivax malaria. Specifically, we wished to determine the relative attractiveness of different animal baits versus human bait to culicine species and An. sinensis.ResultsCulex tritaeniorhynchus was the most prevalent mosquito species and An. sinensis was the sole potential vector of P. vivax malaria in Yongcheng city. There were significant differences (P < 0.01) in the abundance of both An. sinensis and Cx. tritaeniorhynchus collected in distinct baited traps. The relative attractiveness of animal versus human bait was similar towards both An. sinensis and Cx. tritaeniorhynchus. The ranking derived from the mean number of mosquitoes per bait indicated that pigs, goats and calves frequently attracted more mosquitoes than the other hosts tested (dogs, humans, and chickens). These trends were similar across all capture nights at three distinct villages. The human blood index (HBI) of female An. sinensis was 2.94% when computed with mixed meals while 3.70% computed with only the single meal. 19:00~21:00 was the primary peak of host-seeking female An. sinensis while 4:00~5:00 was the smaller peak at night. There was significant correlation between the density of female An. sinensis and the average relative humidity (P < 0.05) in Wangshanzhuang village.ConclusionsPigs, goats and calves were more attractive to An. sinensis and Cx. tritaeniorhynchus than dogs, humans, and chickens. Female An. sinensis host-seeking activity mainly occurred from 19:00 to 21:00. Thus, we propose that future vector control against An. sinensis and Cx. tritaeniorhynchus in the areas along the Huang-Huai River of central China should target the interface of human activity with domestic animals and adopt before human hosts go to bed at night.

Highlights

  • The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control

  • The goals of this study were to compare the abundance and host-seeking behavior of culicine species and An. sinensis in villages of Yongcheng city characterized by different levels of historical incidence of P. vivax malaria and determine the relative attractiveness of different animal baits versus human bait to culicine species and An. sinensis

  • Species composition A total of 35,312 mosquitoes were captured in the three villages during the study period, of which 76.6% (n = 27,048) were Cx. tritaeniorhynchus, 12.2% (n = 4,313) were Cx. pipiens pallens, 10.6% (n = 3,755) were An. sinensis, 0.02% (n = 9) were Aedes albopictus, 0.5% (n = 165) were Armigeres subalbatus (Coquillett), and 0.1% (n = 22) were others

Read more

Summary

Introduction

The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and An. sinensis in Yongcheng city, a representative region of P. vivax malaria. In Henan Province [9,10,11,12,13] and Anhui Province [14,15], large-scale epidemics in recent years have caused a major public health concern. This situation has an impact on the region’s economic development and people’s living standards, and poses a challenge for the routine malaria control strategy. In response to the global initiative to eradicate malaria [16,17], an action plan for malaria elimination was proposed by the Chinese Ministry of Health in 2009 and a national elimination campaign was launched by the Chinese Government in 2010, to eliminate malaria in most endemic regions by 2015 and to achieve ultimate national elimination by 2020 [18]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.