Abstract
RID=""ID="" Communicated by P. HallAbstract:The absolute/convective instability of two-dimensional wakes forming behind a flat plate and near the trailing-edge of a thin wedge-shaped aerofoil in an incompressible/compressible fluid is investigated. The mean velocity profiles are obtained by solving numerically the classical compressible boundary-layer equations with a negative pressure gradient for the flat plate case, and the incompressible triple-deck equations for a thin wedge-shaped trailing-edge. In addition for a Joukowski aerofoil the incompressible mean boundary-layer flow in the vicinity of the trailing-edge is also calculated by solving the interactive boundary-layer equations. A linear stability analysis of the boundary-layer profiles shows that a pocket of absolute instability occurs downstream of the trailing-edge with the extent of the instability region increasing with more adverse pressure gradients. The region of absolute instability persists along the near-wake axis, while the majority of the wake is convectively unstable. For a thin wedge-shaped trailing-edge in an incompressible fluid, a similar stability analysis of the velocity profiles obtained via a composite expansion, also shows the occurrence of absolute instability behind the trailing-edge for a wedge angle greater than a critical value. For increasing values of the wedge angle and for thicker aerofoils, separation takes place near the trailing-edge and the extent of absolute instability increases. Calculations also show that for insulated plates compressibility has a stabilizing effect but cooling the wall destabilizes the flow unlike wall heating.}
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.