Abstract
Prenatal exposure to carcinogens results in newborn DNA damage which in turn is associated with impaired health conditions in both childhood and adulthood. The present study aimed to evaluate whether phase I and II biotransformation enzyme genetic polymorphisms in combination with environmental exposures during pregnancy result in elevated levels of newborn DNA damage. Maternal peripheral and umbilical cord blood samples from 406 mother/newborn pairs were genotyped for a panel of phase I/II metabolic enzymes (CYP1A1, CYP2E1, GSTM1, GSTT1 and NAT2) responsible for the metabolism of tobacco and lifestyle-related mutagens and carcinogens. DNA damage was measured by somatic cell mutation frequency at the glycophorin A (GPA) locus in newborns. No association with elevated somatic cell mutation frequency was observed between the combination of maternal/newborn genotypes and cigarette smoke or lifestyle exposures. The observed variation in newborn GPA frequency might be due to either environmental factors not assessed in this study or inter-individual differences in alternative metabolic or DNA repair pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.