Abstract
Martensite tempering is a critical step to achieve high strength with decent ductility. It is well-known that, during tempering, the carbon is sequentially arranged as segregation, transition carbide and cementite. Abnormally, this study shows the absence of carbide precipitation in Mn-depleted martensite during tempering when Mn distribution is heterogeneous between austenite and martensite. After fast heating and short austenitization from Mn-depleted ferrite and Mn-enriched cementite, the high-temperature austenite with Mn heterogeneous distribution has formed, resulting in the formation of alternating Mn-depleted lath martensite and Mn-enriched film retained austenite (RA) after quenching. In comparison with the carbide precipitation in conventional lath martensite with Mn homogeneous distribution during tempering at 150–500°C, carbide formation is completely inhibited in Mn-depleted lath martensite. Instead, carbon atoms diffuse from Mn-depleted martensite to its neighboring Mn-enriched film RA, leading to an increased carbon content in RA. This is mainly attributed to the strong interaction between Mn and carbon, further assisted by high dislocation density and small width of lath martensite. Additionally, this RA can promote carbon diffusion in the interior due to its gradient Mn distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.