Abstract
The double-step saccade task (DSST) was used to test the hypothesis that children with developmental co-ordination disorder (DCD) who experience deficits in motor imagery have difficulty processing the visual spatial consequences of intended movements using efference copy signals. In order to ensure that the second saccade in the DSST was executed in the absence of visual cues and had to be programmed on the basis of extra-retinal information (efference copy), we analysed only those double-step ensembles where latency plus duration of first saccades was greater than 240 ms (total presentation time of the targets). No significant differences between DCD and control children were evident on measures of latency of first saccades, intersaccadic interval and first saccade error. As predicted, children with DCD who have impaired motor imagery demonstrated specific deficits on the DSST where efference copy had been used to program the saccade sequence. More specifically, these children were less accurate in terms of final eye position on second saccades. Our results raise the possibility that abnormalities in the processing of efference copy signals could underlie motor clumsiness in the majority of children with DCD. Furthermore, the origin of this deficit in efference copy probably exists at the level of the parietal lobe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.