Abstract

A nitrification inhibitor is an effective tool that can be used to reduce the loss of nitrogen (N) and improve crop yields. Most studies have focused on the changes in the soil N mineralization process that may influence the dynamics of soil inorganic N and the soil N cycle. However, the effects of the inhibitors on denitrification rates remain largely unclarified. Therefore, in this study, we monitored the dynamics in annual denitrification rates affected by nitrification inhibitors from a maize field for the first time. Treatments included inorganic fertilizer (NPK), cattle manure, a combination of NPK and DMPP (3,4-dimethylpyrazole phosphate), and a combination of manure and DMPP, applied to brown soils in a no-tillage maize field. The findings demonstrated that the denitrification rate and denitrifying enzyme activity (DEA) were highly variable and there were no significant decreases in all treatment groups after the addition of DMPP. Compared to the control soils, the ammonium (NH4+-N) concentration was significantly increased, while the nitrate (NO3−-N) level was significantly decreased in the DMPP-amended soils less than 30 days after treatment application, indicating that nitrification was partially inhibited. The formation of NO3−-N and the nitrification rates could be markedly reduced by DMPP, while NO3−-N availability did not affect the denitrification rates. Complete degradation of DMPP was observed in the soil on day 70 after DMPP addition, and its half-life was 10 days. Our study may ultimately help to clarify the characteristics of denitrification rates affected by nitrification inhibitors from different N fertilizer types applied to soils and explore the influencing factors of the dynamics in annual denitrification rates. However, more field studies evaluating the effectiveness of nitrification inhibitors in reducing denitrification under different sites and climate conditions, and the molecular mechanisms driving denitrification rate changes, need to be performed in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call