Abstract

• Soil compaction influenced the proportion of coarse roots (i.e. > 1 mm diameter) of maize in a genotype-dependent manner. • Rooting depth was reduced and root distribution within the soil profile changed when grown in compacted soil. • Under compaction, root depth, total length, coarse length, and fine length were not correlated • The ability of roots of different genotypes to reach a certain depth was not related to the amount of roots formed. Mechanical impedance is a primary constraint to root growth and hence the capture of soil resources. To investigate whether rooting depth and root length under mechanical impedance caused by compaction are correlated we evaluated 12 maize lines at two field sites. To distinguish between lateral and nodal roots, roots were sorted into different diameter classes. Coarse roots had diameters >1 mm and represent nodal root axes. Greater proportions of coarse roots on compacted plots were found at both field sites however results were driven by genotypic variation. Soil compaction reduced total rooting depth (in all diameter classes) and coarse rooting depth at both sites compared to non-compacted plots. Root distribution was influenced by compaction with greater root length densities closer to the soil surface. Root length and root depth were not related to each other under impeded conditions. Coarse roots of some genotypes became obstructed on the compacted plots, while other genotypes were capable of growing through the impeding soil and reached deeper soil strata resulting in differential distribution of roots through the soil profile. On compacted plots we observed genotypes with similar root depths but with contrasting coarse root lengths. The ability of roots to grow through compacted soils is therefore not dependent solely on the coarse root length formed by the root system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call