Abstract

Locked nucleic acid (LNA) oligonucleotides bind DNA target sequences forming Watson-Crick and Hoogsteen base pairs, and are therefore of interest for medical applications. To be biologically active, such an oligonucleotide has to efficiently bind the target sequence. Here we used molecular dynamics simulations and electrophoresis mobility shift assays to elucidate the relation between helical structure and affinity for LNA-containing oligonucleotides. In particular, we have studied how LNA substitutions in the polypyrimidine strand of a duplex (thus forming a hetero duplex, i.e. a duplex with a DNA polypurine strand and an LNA/DNA polypyrimidine strand) enhance triplex formation. Based on seven polypyrimidine single strand oligonucleotides, having LNAs in different positions and quantities, we show that alternating LNA with one or more non-modified DNA nucleotides pre-organizes the hetero duplex toward a triple-helical-like conformation. This in turn promotes triplex formation, while consecutive LNAs distort the duplex structure disfavoring triplex formation. The results support the hypothesis that a pre-organization in the hetero duplex structure enhances the binding of triplex forming oligonucleotides. Our findings may serve as a criterion in the design of new tools for efficient oligonucleotide hybridization.

Highlights

  • Nucleic acid hybridization plays a key role in biotechnological and medical applications [1,2]

  • We have shown that Locked nucleic acid (LNA) substitutions in the polypyrimidine strand of a duplex enhance triplex formation[12]

  • We have shown that alternating DNA/LNA nucleotides in the polypyrimidine strand enhances the triplex formation due to pre-structuring of the duplex.[12]

Read more

Summary

Introduction

Nucleic acid hybridization plays a key role in biotechnological and medical applications [1,2]. An effective approach is to design oligonucleotides (ONs) that bind a DNA target sequence with high affinity and specificity, using both Watson-Crick (WC) and Hoogsteen (HG) base pairing. To competitively bind an ON to a target, the binding affinity needs to be higher than. The role of locked nucleic acids in DNA helical structures was supported by Swelife Vinnova (180164) www. All the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.