Abstract

The ability of General Circulation Models (GCMs) to generate Tropical Cyclones (TCs) over the North Atlantic Main Development Region (MDR; 10–20°N, 20–80°W; Goldenberg and Shapiro in J Clim 9:1169–1187, 1996) is examined through a subset of ocean–atmosphere coupled simulations from the World Climate Research Programme (WCRP) Coupled Model Intercomparison Project phase 3 (CMIP3) multimodel data set and a high-resolution (0.5°) Sea Surface Temperature (SST)-forced simulation from the Australian Conformal-Cubic Atmospheric Model GCM. The results are compared with National Center for Environmental Prediction (NCEP-2) and European Center for Medium Range Weather Forecasts Re-Analysis (ERA-40) reanalyses over a common period from 1980 to 1998. Important biases in the representation of the TC activity are encountered over the MDR. This study emphasizes the strong link in the GCMs between African Easterly Waves (AEWs) and TC activity in this region. However, the generation of AEWs is not a sufficient condition alone for the models to produce TCs. Precipitation over the Sahel, especially rainfall over the Fouta Djallon highlands (cf. Fig. 1), is playing a role in the generation of TCs over the MDR. The influence of large-scale fields such as SST, vertical wind shear and tropospheric humidity on TC genesis is also examined. The ability of TC genesis indices, such as the Genesis Potential Index and the Convective Yearly Genesis Potential, to represent TC activity over the MDR in simulations at low to high spatial resolutions is analysed. These indices are found to be a reasonable method for comparing cyclogenesis in different models, even though other factors such as AEW activity should also be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call