Abstract

The aberrancy of a plane curve is a property of the curve that is invariant under both translation and rotation. It provides a numerical measure for the non-circularity of the curve at each point of the curve. (Recall that curvature gives an invariant numerical measure of nonlinearity.) The concept of aberrancy has been around for two centuries, but it has received very little attention. We hope to stir a little interest in the concept by presenting four different derivations of the formula for aberrancy. This may appear to be redundant, but there are some good reasons for doing so. First of all, the only derivation for aberrancy in the literature is a bit confusing and makes a few unjustified assumptions. Secondly, the derivations we present are all significantly different from each other and involve some interesting ideas in elementary real analysis. Finally, although the basic idea behind each derivation is simple, the details can become extremely messy unless a proper path is chosen. We encourage the reader to find one or two approaches of particular interest and use the concept of aberrancy as an extended problem set in an undergraduate analysis course or even a further mathematics class in an English school.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.