Abstract

One of the main mechanisms regulating translation is the one based on the phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) by the general control non-repressive 2 (GCN2) protein kinase. In yeast, this kinase binds to two scaffold proteins (GCN1 and GCN20), facilitating its activation on translating ribosomes. The homology of the three proteins exists in Arabidopsis. In this species, whereas the kinase is activated under several stress situations, the involvement of the scaffold proteins in those processes is controversial, and a new role for GCN1 in translation, independent of the phosphorylation of eIF2α, has been proposed. Arabidopsis presents five genes with homology to GCN20 (ABCF1 to 5) in its genome. We show here that any of these five genes is needed for eIF2α phosphorylation. Furthermore, plant phenotypes under abiotic stresses and chloroplast development suggest that ABCF3 is functionally linked with GCN1, but not with GCN2. Finally, gcn1 and abcf3 mutants share similar transcriptional reprogramming, affecting photosynthesis and stress responses. The common downregulation of regulators of the flagellin receptor FLS2 in both mutants suggest that the observed defect in pathogen-associated molecular pattern (PAMP)-induced stomatal closure of these two mutants could be mediated by these proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.