Abstract
During pathogenesis, fungal pathogens are exposed to a variety of fungitoxic compounds. This may be particularly relevant to Botrytis cinerea, a plant pathogen that has a broad host range and, consequently, is subjected to exposure to many plant defense compounds. In practice, the pathogen is controlled with fungicides belonging to different chemical groups. ATP-binding cassette (ABC) transporters might provide protection against plant defense compounds and fungicides by ATP-driven efflux mechanisms. To test this hypothesis, we cloned BcatrB, an ABC transporter-encoding gene from B. cinerea. This gene encodes a 1,439 amino acid protein with nucleotide binding fold (NBF) and transmembrane (TM) domains in a [NBF-TM6]2 topology. The amino acid sequence has 31 to 67% identity with ABC transporters from various fungi. The expression of BcatrB is up regulated by treatment of B. cinerea germlings with the grapevine phytoalexin resveratrol and the fungicide fenpiclonil. BcatrB replacement mutants are not affected in saprophytic growth on different media but are more sensitive to resveratrol and fenpiclonil than the parental isolate. Furthermore, virulence of deltaBcatrB mutants on grapevine leaves was slightly reduced. These results indicate that BcatrB is a determinant in sensitivity of B. cinerea to plant defense compounds and fungicides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.