Abstract
Extracellular cAMP functions as a primary ligand for cell surface cAMP receptors throughout Dictyostelium discoideum development, controlling chemotaxis and morphogenesis. The developmental consequences of cAMP signaling and the metabolism of cAMP have been studied in great detail, but it has been unclear how cells export cAMP across the plasma membrane. Here we show pharmacologically and genetically that ABC transporters mediate cAMP export. Using an evolutionary-developmental biology approach, we identified several candidate abc genes and characterized one of them, abcB3, in more detail. Genetic and biochemical evidence suggest that AbcB3 is a component of the cAMP export mechanism in D. discoideum development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.