Abstract

<p>We explored the $ AA $-iterative algorithm within the hyperbolic spaces (HSs), aiming to unveil a stability outcome for contraction maps and convergence outcomes for generalized $ (\alpha, \beta) $-nonexpansive ($ G\alpha \beta N $) maps in such spaces. Through this algorithm, we derived compelling outcomes for both strong and $ \Delta $-convergence and weak $ w^2 $-stability. Furthermore, we provided an illustrative example of $ G\alpha \beta N $ maps and conducted a comparative analysis of convergence rates against alternative iterative methods. Additionally, we demonstrated the practical relevance of our findings by applying them to solve the linear Fredholm integral equations (FIEs) and nonlinear Fredholm-Hammerstein integral equations (FHIEs) on time scales.</p>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.